Low-rank solvers for unsteady Stokes-Brinkman optimal control problem with random data / Peter Benner, Sergey Dolgov, Akwum Onwunta and Martin Stoll

Anzeigen / Download3.86 MB

Discovery

870918168

URN

urn:nbn:de:gbv:3:2-64767

DOI

ISBN

ISSN

Beiträger

Erschienen

Magdeburg : Max Planck Institute for Dynamics of Complex Technical Systems, July 23, 2015

Umfang

1 Online-Ressource (35 Seiten = 3,86 MB) : Diagramme

Ausgabevermerk

Sprache

eng

Anmerkungen

Inhaltliche Zusammenfassung

Abstract: We consider the numerical simulation of an optimal control problem constrained by the unsteady Stokes-Brinkman equation involving random data. More precisely, we treat the state, the control, the target (or the desired state), as well as the the viscosity, as analytic functions depending on uncertain parameters. This allows for a simultaneous generalized polynomial chaos approximation of these random functions in the stochastic Galerkin finite element method discretization of the model. The discrete problem yields a prohibitively high dimensional saddle point system with Kronecker product structure. We develop a new alternating iterative tensor method for an efficient reduction of this system by the low-rank Tensor Train representation. Besides, we propose and analyze a robust Schur complement-based preconditioner for the solution of the saddle-point system. The performance of our approach is illustrated with extensive numerical experiments based on two- and three-dimensional examples. The developed Tensor Train scheme reduces the solution storage by two orders of magnitude.

Schriftenreihe

Max Planck Institute Magdeburg Preprints ; 15-10 ppn:870173030

Gesamttitel

Band

Zeitschriftentitel

Bandtitel

Beschreibung

Schlagwörter

Zitierform

enthaltene Monographien

enthalten in mehrteiligem Werk

Vorgänger dieser Zeitschrift

Nachfolger dieser Zeitschrift