Low-rank solvers for unsteady Stokes-Brinkman optimal control problem with random data / Peter Benner, Sergey Dolgov, Akwum Onwunta and Martin Stoll

cbs.date.changed2022-04-07
cbs.date.creation2016-10-25
cbs.picatypeOa
cbs.publication.displayformMagdeburg : Max Planck Institute for Dynamics of Complex Technical Systems, July 23, 2015
dc.contributor.authorBenner, Peter
dc.contributor.authorDolgov, Sergey
dc.contributor.authorOnwunta, Akwum
dc.contributor.authorStoll, Martin
dc.contributor.otherMax-Planck-Institut für Dynamik Komplexer Technischer Systeme
dc.date.accessioned2025-05-29T00:33:10Z
dc.date.issued2015
dc.description.abstractAbstract: We consider the numerical simulation of an optimal control problem constrained by the unsteady Stokes-Brinkman equation involving random data. More precisely, we treat the state, the control, the target (or the desired state), as well as the the viscosity, as analytic functions depending on uncertain parameters. This allows for a simultaneous generalized polynomial chaos approximation of these random functions in the stochastic Galerkin finite element method discretization of the model. The discrete problem yields a prohibitively high dimensional saddle point system with Kronecker product structure. We develop a new alternating iterative tensor method for an efficient reduction of this system by the low-rank Tensor Train representation. Besides, we propose and analyze a robust Schur complement-based preconditioner for the solution of the saddle-point system. The performance of our approach is illustrated with extensive numerical experiments based on two- and three-dimensional examples. The developed Tensor Train scheme reduces the solution storage by two orders of magnitude.de
dc.format.extent1 Online-Ressource (35 Seiten = 3,86 MB) : Diagramme
dc.genrebook
dc.identifier.ppn870918168
dc.identifier.urihttps://epflicht.bibliothek.uni-halle.de/handle/123456789/3949
dc.identifier.urnurn:nbn:de:gbv:3:2-64767
dc.identifier.vl-id2483951
dc.language.isoeng
dc.publisherMax Planck Institute for Dynamics of Complex Technical Systems
dc.relation.ispartofseriesMax Planck Institute Magdeburg Preprints ; 15-10 ppn:870173030
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc510
dc.titleLow-rank solvers for unsteady Stokes-Brinkman optimal control problem with random data / Peter Benner, Sergey Dolgov, Akwum Onwunta and Martin Stoll
dc.typeBook
dspace.entity.typeMonograph
local.accessrights.itemAnonymous
local.openaccesstrue

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
urn_nbn_de_gbv_3_2-64767.pdf
Größe:
3.86 MB
Format:
Adobe Portable Document Format
Beschreibung:
Low-rank solvers for unsteady Stokes-Brinkman optimal control problem with random data
Herunterladen

Sammlungen