Adaptive discontinuous Galerkin approximation of optimal control problems governed by transient convection-diffusion equations / Hamdullah Yücel, Martin Stoll, Peter Benner
Anzeigen / Download821.47 KB
Discovery
870918648
URN
urn:nbn:de:gbv:3:2-64771
DOI
ISBN
ISSN
Autorin / Autor
Beiträger
Erschienen
Magdeburg : Max Planck Institute for Dynamics of Complex Technical Systems, July 16, 2015
Umfang
1 Online-Ressource (27 Seiten = 0,8 MB) : Diagramme
Ausgabevermerk
Sprache
eng
Anmerkungen
Inhaltliche Zusammenfassung
Abstract: In this paper, we investigate an a posteriori error estimate of a control constrained optimal control problem governed by a time-dependent convection diffusion equation. Control constraints are handled by using the primal-dual active set algorithm as a semi-smooth Newton method or by adding a Moreau-Yosida-type penalty function to the cost functional. An adaptive mesh refinement indicated by a posteriori error estimates is applied for both approaches. A symmetric interior penalty Galerkin method in space and a backward Euler in time are applied in order to discretize the optimization problem. Numerical results are presented, which illustrate the performance of the proposed error estimator.
Schriftenreihe
Max Planck Institute Magdeburg Preprints ; 15-11 ppn:870173030