On optimality of interpolation-based low rank approximations of large-scale matrix equations / Peter Benner, Tobias Breiten

Anzeigen / Download464.25 KB

Discovery

870253808

URN

urn:nbn:de:gbv:3:2-63872

DOI

ISBN

ISSN

Beiträger

Erschienen

Magdeburg : Max Planck Institute for Dynamics of Complex Technical Systems, February 3, 2012

Umfang

1 Online-Ressource (32 Seiten = 0,45 MB) : Diagramme

Ausgabevermerk

Sprache

eng

Anmerkungen

Inhaltliche Zusammenfassung

Abstract: In this paper, we will discuss some optimality results for the approximation of large-scale matrix equations. In particular, this will include the special case of Lyapunov and Sylvester equations, respectively. We show a relation between the iterative rational Krylov algorithm and a Riemannian optimization method which recently has been shown to locally minimize a certain energy norm of the underlying Lyapunov operator. Moreover, we extend the results for a more general setting leading to a slight modification of IRKA. By means of some numerical test examples, we will show the efficiency of the proposed methods.

Schriftenreihe

Max Planck Institute Magdeburg Preprints ; 11-10 ppn:870173030

Gesamttitel

Band

Zeitschriftentitel

Bandtitel

Beschreibung

Schlagwörter

Zitierform

enthaltene Monographien

enthalten in mehrteiligem Werk

Vorgänger dieser Zeitschrift

Nachfolger dieser Zeitschrift