Low-rank solutions to an optimization problem constrained by the Navier-Stokes equations / Sergey Dolgov, Martin Stoll

Anzeigen / Download640.43 KB

Discovery

870922998

URN

urn:nbn:de:gbv:3:2-64817

DOI

ISBN

ISSN

Beiträger

Erschienen

Magdeburg : Max Planck Institute for Dynamics of Complex Technical Systems, September 18, 2015

Umfang

1 Online-Ressource (33 Seiten = 0,62 MB) : Diagramme

Ausgabevermerk

Sprache

eng

Anmerkungen

Inhaltliche Zusammenfassung

Abstract: The numerical solution of PDE-constrained optimization problems subject to the non-stationary Navier-Stokes equation is a challenging task. While space-time approaches often show favorable convergence properties they often suffer from storage problems. We here propose to approximate the solution to the optimization problem in a low-rank from, which is similar to the Model Order Reduction (MOR) approach. However, in contrast to classical MOR schemes we do not compress the full solution at the end of the algorithm but start our algorithm with low-rank data and maintain this form throughout the iteration. Theoretical results and numerical experiments indicate that this approach reduces the computational costs by two orders of magnitude.

Schriftenreihe

Max Planck Institute Magdeburg Preprints ; 15-15 ppn:870173030

Gesamttitel

Band

Zeitschriftentitel

Bandtitel

Beschreibung

Schlagwörter

Zitierform

enthaltene Monographien

enthalten in mehrteiligem Werk

Vorgänger dieser Zeitschrift

Nachfolger dieser Zeitschrift