Fast solution of Cahn-Hilliard variational inequalities using implicit time discretization and finite elements / Jessica Bosch, Martin Stoll, Peter Benner

cbs.date.changed2022-04-07
cbs.date.creation2016-10-19
cbs.picatypeOa
cbs.publication.displayformMagdeburg : Max Planck Institute for Dynamics of Complex Technical Systems, January 28, 2013
dc.contributor.authorBosch, Jessica
dc.contributor.authorStoll, Martin
dc.contributor.authorBenner, Peter
dc.contributor.otherMax-Planck-Institut für Dynamik Komplexer Technischer Systeme
dc.date.accessioned2025-05-29T00:23:26Z
dc.date.issued2013
dc.description.abstractAbstract: We consider the efficient solution of the Cahn-Hilliard variational inequality using an implicit time discretization, which is formulated as an optimal control problem with pointwise constraints on the control. By applying a semi-smooth Newton method combined with a Moreau-Yosida regularization technique for handling the control constraints we show superlinear convergence in function space. At the heart of this method lies the solution of large and sparse linear systems for which we propose the use of preconditioned Krylov subspace solvers using an effective Schur complement approximation. Numerical results illustrate the competitiveness of this approach.de
dc.format.extent1 Online-Ressource (34 Seiten = 1,94 MB) : Diagramme
dc.genrebook
dc.identifier.ppn870428152
dc.identifier.urihttps://epflicht.bibliothek.uni-halle.de/handle/123456789/3889
dc.identifier.urnurn:nbn:de:gbv:3:2-64140
dc.identifier.vl-id2481668
dc.language.isoeng
dc.publisherMax Planck Institute for Dynamics of Complex Technical Systems
dc.relation.ispartofseriesMax Planck Institute Magdeburg Preprints ; 13-01 ppn:870173030
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc510
dc.titleFast solution of Cahn-Hilliard variational inequalities using implicit time discretization and finite elements / Jessica Bosch, Martin Stoll, Peter Benner
dc.typeBook
dspace.entity.typeMonograph
local.accessrights.itemAnonymous
local.openaccesstrue

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
urn_nbn_de_gbv_3_2-64140.pdf
Größe:
1.95 MB
Format:
Adobe Portable Document Format
Beschreibung:
Fast solution of Cahn-Hilliard variational inequalities using implicit time discretization and finite elements
Herunterladen

Sammlungen