Inexact low-rank Newton-ADI method for large-scale algebraic Riccati equations / Peter Benner, Matthias Heinkenschloss, Jens Saak, Heiko K. Weichelt

cbs.date.changed2021-07-27
cbs.date.creation2016-10-25
cbs.picatypeOa
cbs.publication.displayformMagdeburg : Max Planck Institute for Dynamics of Complex Technical Systems, September 9, 2015
dc.contributor.authorBenner, Peter
dc.contributor.authorHeinkenschloß, Matthias
dc.contributor.authorSaak, Jens
dc.contributor.authorWeichelt, Heiko K.
dc.contributor.otherMax-Planck-Institut für Dynamik Komplexer Technischer Systeme
dc.date.accessioned2025-05-29T00:32:31Z
dc.date.issued2015
dc.description.abstractAbstract: This paper improves the inexact Kleinman-Newton method by incorporating a line search and by systematically integrating the low-rank structure resulting from ADI methods for the approximate solution of the Lyapunov equation that needs to be solved to compute the Kleinman-Newton step. A convergence result is presented that tailors the convergence proof for general inexact Newton methods to the structure of Riccati equations and avoids positive semi-deniteness ssumptions on the Lyapunov equation residual, which in general do not hold for ow-rank approaches. On a test example, the improved inexact Kleinman-Newton ethod is seven to twelve times faster than the exact Kleinman-Newton method ithout line search; the addition of the line search to the inexact Kleinman-Newton method alone can reduce computation time by up to a factor of two.de
dc.format.extent1 Online-Ressource (28 Seiten = 0,45 MB)
dc.genrebook
dc.identifier.ppn870916386
dc.identifier.urihttps://epflicht.bibliothek.uni-halle.de/handle/123456789/3945
dc.identifier.urnurn:nbn:de:gbv:3:2-64725
dc.identifier.vl-id2483903
dc.language.isoeng
dc.publisherMax Planck Institute for Dynamics of Complex Technical Systems
dc.relation.ispartofseriesMax Planck Institute Magdeburg Preprints ; 15-06 ppn:870173030
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc510
dc.titleInexact low-rank Newton-ADI method for large-scale algebraic Riccati equations / Peter Benner, Matthias Heinkenschloss, Jens Saak, Heiko K. Weichelt
dc.typeBook
dspace.entity.typeMonograph
local.accessrights.itemAnonymous
local.openaccesstrue

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
urn_nbn_de_gbv_3_2-64725.pdf
Größe:
467.46 KB
Format:
Adobe Portable Document Format
Beschreibung:
Inexact low-rank Newton-ADI method for large-scale algebraic Riccati equations
Herunterladen

Sammlungen