Inexact low-rank Newton-ADI method for large-scale algebraic Riccati equations / Peter Benner, Matthias Heinkenschloss, Jens Saak, Heiko K. Weichelt
| cbs.date.changed | 2021-07-27 | |
| cbs.date.creation | 2016-10-25 | |
| cbs.picatype | Oa | |
| cbs.publication.displayform | Magdeburg : Max Planck Institute for Dynamics of Complex Technical Systems, September 9, 2015 | |
| dc.contributor.author | Benner, Peter | |
| dc.contributor.author | Heinkenschloß, Matthias | |
| dc.contributor.author | Saak, Jens | |
| dc.contributor.author | Weichelt, Heiko K. | |
| dc.contributor.other | Max-Planck-Institut für Dynamik Komplexer Technischer Systeme | |
| dc.date.accessioned | 2025-05-29T00:32:31Z | |
| dc.date.issued | 2015 | |
| dc.description.abstract | Abstract: This paper improves the inexact Kleinman-Newton method by incorporating a line search and by systematically integrating the low-rank structure resulting from ADI methods for the approximate solution of the Lyapunov equation that needs to be solved to compute the Kleinman-Newton step. A convergence result is presented that tailors the convergence proof for general inexact Newton methods to the structure of Riccati equations and avoids positive semi-deniteness ssumptions on the Lyapunov equation residual, which in general do not hold for ow-rank approaches. On a test example, the improved inexact Kleinman-Newton ethod is seven to twelve times faster than the exact Kleinman-Newton method ithout line search; the addition of the line search to the inexact Kleinman-Newton method alone can reduce computation time by up to a factor of two. | de |
| dc.format.extent | 1 Online-Ressource (28 Seiten = 0,45 MB) | |
| dc.genre | book | |
| dc.identifier.ppn | 870916386 | |
| dc.identifier.uri | https://epflicht.bibliothek.uni-halle.de/handle/123456789/3945 | |
| dc.identifier.urn | urn:nbn:de:gbv:3:2-64725 | |
| dc.identifier.vl-id | 2483903 | |
| dc.language.iso | eng | |
| dc.publisher | Max Planck Institute for Dynamics of Complex Technical Systems | |
| dc.relation.ispartofseries | Max Planck Institute Magdeburg Preprints ; 15-06 ppn:870173030 | |
| dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
| dc.subject.ddc | 510 | |
| dc.title | Inexact low-rank Newton-ADI method for large-scale algebraic Riccati equations / Peter Benner, Matthias Heinkenschloss, Jens Saak, Heiko K. Weichelt | |
| dc.type | Book | |
| dspace.entity.type | Monograph | |
| local.accessrights.item | Anonymous | |
| local.openaccess | true |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- urn_nbn_de_gbv_3_2-64725.pdf
- Größe:
- 467.46 KB
- Format:
- Adobe Portable Document Format
- Beschreibung:
- Inexact low-rank Newton-ADI method for large-scale algebraic Riccati equations
Herunterladen