Convergence to equilibrium for second order differential equations with weak damping of memory type / R. Zacher
Anzeigen / Download292.86 KB
Discovery
585786828
URN
urn:nbn:de:gbv:3:2-7754
DOI
ISBN
ISSN
Autorin / Autor
Beiträger
Körperschaft
Erschienen
Halle : Inst. für Mathematik, 2008
Umfang
Online-Resource (PDF-Datei: 17 S., 0,28 MB)
Ausgabevermerk
Sprache
eng
Anmerkungen
Parallel als Buch-Ausg. erschienen
Inhaltliche Zusammenfassung
We study the asymptotic behaviour, as t ! 1, of bounded solutions to a second order integro-differential equation in finite dimensions where the damping term is of memory type and can be of arbitrary fractional order less than 1. We derive appropriate Lyapunov functions for this equation and prove that any global bounded solution converges to an equilibrium of a related equation, if the nonlinear potential E occurring in the equation satisfies the Lojasiewicz inequality.
Schriftenreihe
Reports ; 2008,15 ppn:584754027