Exploring the evolution of innovation networks in science-driven and scale-intensive industries : new evidence from a stochastic actor-based approach / Tobias Buchmann; Daniel Hain; Muhamed Kudic; Matthias Müller

cbs.date.changed2021-02-24
cbs.date.creation2014-01-14
cbs.picatypeOa
cbs.publication.displayformHalle (Saale) : Inst. für Wirtschaftsforschung, 2014
dc.contributor.contributorBuchmann, Tobias
dc.contributor.contributorHain, Daniel
dc.contributor.contributorKudic, Muhamed
dc.contributor.contributorMüller, Matthias
dc.date.accessioned2025-05-28T16:19:13Z
dc.date.issued2014
dc.description.abstractOur primary goal is to analyse the drivers of evolutionary network change processes by using a stochastic actor-based simulation approach. We contribute to the literature by combining two unique datasets, concerning the German laser and automotive industry, between 2002 and 2006 to explore whether geographical, network-related, and techno-logical determinants affect the evolution of networks, and if so, as to what extent these determinants systematically differ for science-driven industries compared to scale-intensive industries. Our results provide empirical evidence for the explanatory power of network-related determinants in both industries. The ‘experience effect’ as well as the ‘transitivity effects’ are significant for both industries but more pronounced for laser manufacturing firms. When it comes to ‘geographical effects’ and ‘technological effects’ the picture changes considerably. While geographical proximity plays an important role in the automotive industry, firms in the laser industry seem to be less dependent on geographical closeness to cooperation partners; instead they rather search out for cooperation opportunities in distance. This might reflect the strong dependence of firms in science-driven industries to access diverse external knowledge, which cannot necessarily be found in the close geographical surrounding. Technological proximity negatively influences cooperation decisions for laser source manufacturers, yet has no impact for automotive firms. In other words,technological heterogeneity seems to explain, at least in science-driven industries, the attractiveness of potential cooperation partners.de
dc.format.extentOnline-Ressource (PDF-Datei: 42 S., 0,91 MB) : graph. Darst.
dc.genrebook
dc.identifier.ppn776115766
dc.identifier.urihttps://epflicht.bibliothek.uni-halle.de/handle/123456789/974
dc.identifier.urnurn:nbn:de:gbv:3:2-25437
dc.identifier.vl-id1816329
dc.language.isoeng
dc.publisherInst. für Wirtschaftsforschung
dc.relation.ispartofseriesIWH-Diskussionspapiere ; 2014,1 ppn:37244492X
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc330
dc.titleExploring the evolution of innovation networks in science-driven and scale-intensive industries : new evidence from a stochastic actor-based approach / Tobias Buchmann; Daniel Hain; Muhamed Kudic; Matthias Müller
dc.typeBook
dspace.entity.typeMonograph
local.accessrights.itemAnonymous
local.openaccesstrue

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
urn_nbn_de_gbv_3_2-25437.pdf
Größe:
931.93 KB
Format:
Adobe Portable Document Format
Beschreibung:
Exploring the evolution of innovation networks in science-driven and scale-intensive industries
Herunterladen

Sammlungen