Time-dependent Dirichlet conditions in finite element discretizations / Peter Benner, Jan Heiland

cbs.date.changed2021-07-27
cbs.date.creation2016-10-25
cbs.picatypeOa
cbs.publication.displayformMagdeburg : Max Planck Institute for Dynamics of Complex Technical Systems, March 10, 2015
dc.contributor.authorBenner, Peter
dc.contributor.authorHeiland, Jan
dc.contributor.otherMax-Planck-Institut für Dynamik Komplexer Technischer Systeme
dc.date.accessioned2025-05-29T00:32:02Z
dc.date.issued2015
dc.description.abstractAbstract: For the modelling and the numerical approximation of problems with time-dependent Dirichlet boundary conditions one can call on several consistent and inconsistent approaches. We show that spatially discretized boundary control problems can be brought into a standard state space form accessible for standard optimization and model reduction techniques. We discuss several methods that base on standard finite-element discretizations, propose a newly developed problem formulation, and investigate their performance in numerical examples. We illustrate that penalty schemes require a wise choice of the penalization parameters in particular for iterative solves of the algebraic equations. Incidentally we confirm that standard finite element discretizations of higher order may not achieve the optimal order of convergence in the treatment of boundary forcing problems and that convergence estimates by the common method of manufactured solutions can be misleading.de
dc.format.extent1 Online-Ressource (27 Seiten = 0,59 MB) : Diagramme
dc.genrebook
dc.identifier.ppn870915312
dc.identifier.urihttps://epflicht.bibliothek.uni-halle.de/handle/123456789/3942
dc.identifier.urnurn:nbn:de:gbv:3:2-64697
dc.identifier.vl-id2483867
dc.language.isoeng
dc.publisherMax Planck Institute for Dynamics of Complex Technical Systems
dc.relation.ispartofseriesMax Planck Institute Magdeburg Preprints ; 15-03 ppn:870173030
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc510
dc.titleTime-dependent Dirichlet conditions in finite element discretizations / Peter Benner, Jan Heiland
dc.typeBook
dspace.entity.typeMonograph
local.accessrights.itemAnonymous
local.openaccesstrue

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
urn_nbn_de_gbv_3_2-64697.pdf
Größe:
612.29 KB
Format:
Adobe Portable Document Format
Beschreibung:
Time-dependent Dirichlet conditions in finite element discretizations
Herunterladen

Sammlungen