Implementation and numerical results / Peter Benner, Vasile Sima, Matthias Voigt

Anzeigen / Download648.55 KB

Discovery

URN

urn:nbn:de:gbv:3:2-64277

DOI

ISBN

ISSN

Beiträger

Erschienen

Magdeburg : Max Planck Institute for Dynamics of Complex Technical Systems, 2013

Umfang

1 Online-Ressource
1 Online-Ressource (39 Seiten = 0,63 MB) : Diagramme

Ausgabevermerk

Sprache

eng

Anmerkungen

Inhaltliche Zusammenfassung

Abstract: Skew-Hamiltonian/Hamiltonian matrix pencils λS - H appear in many applications, including linear quadratic optimal control problems, H∞-optimization, certain multi-body systems and many other areas in applied mathematics, physics, and chemistry. In these applications it is necessary to compute certain eigenvalues and/or corresponding deflating subspaces of these matrix pencils. Recently developed methods exploit and preserve the skew-Hamiltonian/Hamiltonian structure and hence increase reliability, accuracy and performance of the computations. In this paper we describe the implementation of the algorithms in the style of subroutine included in the Subroutine Library in Control Theory (SLICOT) described in Part I of this work and address various details. Furthermore, we perform numerical tests using real-world examples to demonstrate the superiority of the new algorithms compared to standard methods.

Schriftenreihe

Gesamttitel

Band

2

Zeitschriftentitel

Bandtitel

Beschreibung

Schlagwörter

Zitierform

enthaltene Monographien

Vorgänger dieser Zeitschrift

Nachfolger dieser Zeitschrift