Assumption errors and forecast accuracy : a partial linear instrumental variable and double machine learning approach / Katja Heinisch, Fabio Scaramella, Christoph Schult ; editor: Halle Institute for Economic Research (IWH) - Member of the Leibniz Association

cbs.date.changed2025-05-21
cbs.date.creation2025-05-19
cbs.picatypeOa
cbs.publication.displayformHalle (Saale), Germany : Halle Institute for Economic Research (IWH) - Member of the Leibniz Association, May 2025
dc.contributor.authorHeinisch, Katja
dc.contributor.authorScaramella, Fabio
dc.contributor.authorSchult, Christoph
dc.contributor.otherLeibniz-Institut für Wirtschaftsforschung Halle
dc.date.accessioned2025-06-02T12:04:56Z
dc.date.issued2025
dc.description.abstractAccurate macroeconomic forecasts are essential for effective policy decisions, yet their precision depends on the accuracy of the underlying assumptions. This paper examines the extent to which assumption errors affect forecast accuracy, introducing the average squared assumption error (ASAE) as a valid instrument to address endogeneity. Using double/debiased machine learning (DML) techniques and partial linear instrumental variable (PLIV) models, we analyze GDP growth forecasts for Germany, conditioning on key exogenous variables such as oil price, exchange rate, and world trade. We find that traditional ordinary least squares (OLS) techniques systematically underestimate the influence of assumption errors, particularly with respect to world trade, while DML effectively mitigates endogeneity, reduces multicollinearity, and captures nonlinearities in the data. However, the effect of oil price assumption errors on GDP forecast errors remains ambiguous. These results underscore the importance of advanced econometric tools to improve the evaluation of macroeconomic forecasts.de
dc.description.noteLiteraturverzeichnis: Seite 16-18
dc.format.extent1 Online-Ressource (III, 18 Seiten, Seite A-1-A16, 3,89 MB) : Diagramme
dc.genrebook
dc.identifier.otherkxp: 1925987159
dc.identifier.ppn1925987159
dc.identifier.urihttps://epflicht.bibliothek.uni-halle.de/handle/123456789/15414
dc.identifier.urnurn:nbn:de:gbv:3:2-1142533
dc.identifier.vl-id3329202
dc.language.isoeng
dc.publisherHalle Institute for Economic Research (IWH) - Member of the Leibniz Association
dc.relation.ispartofseriesIWH-Diskussionspapiere ; 2025, no. 6 (May 2025) ppn:837399270
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectaccuracy
dc.subjectexternal assumptions
dc.subjectforecasts
dc.subjectforecast errors
dc.subjectmachine learning
dc.subject.ddc330
dc.titleAssumption errors and forecast accuracy : a partial linear instrumental variable and double machine learning approach / Katja Heinisch, Fabio Scaramella, Christoph Schult ; editor: Halle Institute for Economic Research (IWH) - Member of the Leibniz Association
dc.typeBook
dspace.entity.typeMonograph
local.accessrights.itemAnonymous
local.openaccesstrue

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
urn_nbn_de_gbv_3_2-1142533.pdf
Größe:
3.89 MB
Format:
Adobe Portable Document Format
Beschreibung:
Assumption errors and forecast accuracy
Herunterladen

Sammlungen