Implicit Volterra series interpolation for model reduction of bilinear systems / Mian Ilyas Ahmad, Ulrike Baur, Peter Benner

cbs.date.changed2021-07-27
cbs.date.creation2016-10-25
cbs.picatypeOa
cbs.publication.displayformMagdeburg : Max Planck Institute for Dynamics of Complex Technical Systems, December 17, 2015
dc.contributor.authorAhmad, Mian Ilyas
dc.contributor.authorBaur, Ulrike
dc.contributor.authorBenner, Peter
dc.contributor.otherMax-Planck-Institut für Dynamik Komplexer Technischer Systeme
dc.date.accessioned2025-05-29T00:34:57Z
dc.date.issued2015
dc.description.abstractAbstract: We propose a new interpolatory framework for model reduction of large-scale bilinear systems. The input-output representation of a bilinear system in frequency domain involves a series of multivariate transfer functions, each representing a subsystem of the bilinear system. If a weighted sum of these multivariate transfer functions associated with a reduced bilinear system interpolates a weighted sum of the original multivariate transfer functions, we say that the reduced system satisfies a Volterra series interpolation. These interpolatory conditions can also ensure the necessary conditions for H2-optimal model reduction. We observe that, by carefully selecting the weights of the series, the Volterra series interpolatory conditions are transformed to the problem of interpolating a linear system with an affine parameter dependence. Such linear parametric systems can then be reduced by some method for parametric model order reduction. Linear systems where the affine parameter dependence is given as low-rank variation in the state matrix can be mapped into a non-parameterized multi-input multi-output linear system. This allows us to utilize the standard (non-parametric) linear IRKA for the problem of parameterized/bilinear interpolation. Numerical results show that the approximations are of comparable accuracy to those obtained from the bilinear iterative rational Krylov algorithm. The proposed approach, however, has the advantage that it reduces the computational costs as it involves computations associated with solving linear systems only.de
dc.format.extent1 Online-Ressource (18 Seiten = 0,37 MB) : Diagramme
dc.genrebook
dc.identifier.ppn870927671
dc.identifier.urihttps://epflicht.bibliothek.uni-halle.de/handle/123456789/3960
dc.identifier.urnurn:nbn:de:gbv:3:2-64876
dc.identifier.vl-id2484170
dc.language.isoeng
dc.publisherMax Planck Institute for Dynamics of Complex Technical Systems
dc.relation.ispartofseriesMax Planck Institute Magdeburg Preprints ; 15-21 ppn:870173030
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc510
dc.titleImplicit Volterra series interpolation for model reduction of bilinear systems / Mian Ilyas Ahmad, Ulrike Baur, Peter Benner
dc.typeBook
dspace.entity.typeMonograph
local.accessrights.itemAnonymous
local.openaccesstrue

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
urn_nbn_de_gbv_3_2-64876.pdf
Größe:
379.72 KB
Format:
Adobe Portable Document Format
Beschreibung:
Implicit Volterra series interpolation for model reduction of bilinear systems
Herunterladen

Sammlungen