Uncertainty quantification for Maxwell\'s equations using stochastic collocation and model order reduction / Peter Benner, Judith Schneider

cbs.date.changed2021-07-27
cbs.date.creation2016-10-20
cbs.picatypeOa
cbs.publication.displayformMagdeburg : Max Planck Institute for Dynamics of Complex Technical Systems, October 16, 2013
dc.contributor.authorBenner, Peter
dc.contributor.authorSchneider, Judith
dc.contributor.otherMax-Planck-Institut für Dynamik Komplexer Technischer Systeme
dc.date.accessioned2025-05-29T00:26:22Z
dc.date.issued2013
dc.description.abstractAbstract: Modeling and simulation are important for the design process of new semiconductor structures. Difficulties proceed from shrinking structures, increasing working frequencies, and uncertainties of materials and geometries. Therefore, we consider the time-harmonic Maxwell\'s equations for the simulation of a coplanar waveguide with uncertain material parameters. To analyze the uncertainty of the system, we use stochastic collocation with Stroud and sparse grid points. The results are compared to a Monte Carlo simulation. Both methods rely on repetitive runs of a deterministic solver. Hence, we compute a reduced model by means of proper orthogonal decomposition to reduce the computational cost. The Monte Carlo simulation and the stochastic collocation are both applied to the full and the reduced model. All results are compared concerning accuracy and computation time.de
dc.format.extent1 Online-Ressource (16 Seiten = 1,08 MB) : Illustration, Diagramme
dc.genrebook
dc.identifier.ppn870596020
dc.identifier.urihttps://epflicht.bibliothek.uni-halle.de/handle/123456789/3907
dc.identifier.urnurn:nbn:de:gbv:3:2-64345
dc.identifier.vl-id2482586
dc.language.isoeng
dc.publisherMax Planck Institute for Dynamics of Complex Technical Systems
dc.relation.ispartofseriesMax Planck Institute Magdeburg Preprints ; 13-19 ppn:870173030
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc510
dc.titleUncertainty quantification for Maxwell\'s equations using stochastic collocation and model order reduction / Peter Benner, Judith Schneider
dc.typeBook
dspace.entity.typeMonograph
local.accessrights.itemAnonymous
local.openaccesstrue

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
urn_nbn_de_gbv_3_2-64345.pdf
Größe:
1.08 MB
Format:
Adobe Portable Document Format
Beschreibung:
Uncertainty quantification for Maxwell\`s equations using stochastic collocation and model order reduction
Herunterladen

Sammlungen