Fast iterative solvers for fractional differential equations / Tobias Breiten, Valeria Simoncini, Martin Stoll

cbs.date.changed2022-04-07
cbs.date.creation2016-10-20
cbs.picatypeOa
cbs.publication.displayformMagdeburg : Max Planck Institute for Dynamics of Complex Technical Systems, January 31, 2014
dc.contributor.authorBreiten, Tobias
dc.contributor.authorSimoncini, Valeria
dc.contributor.authorStoll, Martin
dc.contributor.otherMax-Planck-Institut für Dynamik Komplexer Technischer Systeme
dc.date.accessioned2025-05-29T00:27:30Z
dc.date.issued2014
dc.description.abstractAbstract: Fractional differential equations play an important role in science and technology. Many problems can be cast using both fractional time and spatial derivatives. In order to accurately simulate natural phenomena using this technology one needs fine spatial and temporal discretizations. This leads to large-scale linear systems or matrix equations, especially whenever more than one space dimension is considered. The discretization of fractional differential equations typically involves dense matrices with a Toeplitz structure. We combine the fast evaluation of Toeplitz matrices and their circulant preconditioners with state-of-the-art linear matrix equation solvers to efficiently solve these problems, both in terms of CPU time and memory requirements. Numerical experiments on typical differential problems with fractional derivatives in both space and time showing the effectiveness of the approaches are reported.de
dc.format.extent1 Online-Ressource (28 Seiten = 1,31 MB) : Diagramme
dc.genrebook
dc.identifier.ppn870598252
dc.identifier.urihttps://epflicht.bibliothek.uni-halle.de/handle/123456789/3914
dc.identifier.urnurn:nbn:de:gbv:3:2-64419
dc.identifier.vl-id2482750
dc.language.isoeng
dc.publisherMax Planck Institute for Dynamics of Complex Technical Systems
dc.relation.ispartofseriesMax Planck Institute Magdeburg Preprints ; 14-02 ppn:870173030
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc510
dc.titleFast iterative solvers for fractional differential equations / Tobias Breiten, Valeria Simoncini, Martin Stoll
dc.typeBook
dspace.entity.typeMonograph
local.accessrights.itemAnonymous
local.openaccesstrue

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
urn_nbn_de_gbv_3_2-64419.pdf
Größe:
1.32 MB
Format:
Adobe Portable Document Format
Beschreibung:
Fast iterative solvers for fractional differential equations
Herunterladen

Sammlungen