Forecast combination and interpretability using random subspace / Boris Kozyrev ; editor: Halle Institute for Economic Research (IWH) - Member of the Leibniz Association

cbs.date.changed2024-10-25
cbs.date.creation2024-10-24
cbs.picatypeOa
cbs.publication.displayformHalle (Saale), Germany : Halle Institute for Economic Research (IWH) - Member of the Leibniz Association, [2024]
dc.contributor.authorKozyrev, Boris
dc.contributor.otherLeibniz-Institut für Wirtschaftsforschung Halle
dc.date.accessioned2025-06-02T10:21:16Z
dc.date.issued2024
dc.description.abstractThis paper investigates forecast aggregation via the random subspace regressions method (RSM) and explores the potential link between RSM and the Shapley value decomposition (SVD) using the US GDP growth rates. This technique combination enables handling high-dimensional data and reveals the relative importance of each individual forecast. First, it is possible to enhance forecasting performance in certain practical instances by randomly selecting smaller subsets of individual forecasts and obtaining a new set of predictions based on a regression-based weighting scheme. The optimal value of selected individual forecasts is also empirically studied. Then, a connection between RSM and SVD is proposed, enabling the examination of each individual forecast’s contribution to the final prediction, even when there is a large number of forecasts. This approach is model-agnostic (can be applied to any set of predictions) and facilitates understanding of how the aggregated prediction is obtained based on individual forecasts, which is crucial for decision-makers.de
dc.description.noteLiteraturverzeichnis: Seite 23-26
dc.format.extent1 Online-Ressource (III, 31 Seiten, 0,85 MB) : Diagramme
dc.genrebook
dc.identifier.otherkxp: 1906748616
dc.identifier.ppn1906748616
dc.identifier.urihttps://epflicht.bibliothek.uni-halle.de/handle/123456789/14854
dc.identifier.urnurn:nbn:de:gbv:3:2-1101902
dc.identifier.vl-id3315471
dc.language.isoeng
dc.publisherHalle Institute for Economic Research (IWH) - Member of the Leibniz Association
dc.relation.ispartofseriesIWH-Diskussionspapiere ; 2024, no. 21 (October 2024) ppn:837399270
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectforecast combination
dc.subjectforecast combination puzzle
dc.subjectforecasting
dc.subjectrandom subset
dc.subjectShapley value decomposition
dc.subject.ddc330
dc.titleForecast combination and interpretability using random subspace / Boris Kozyrev ; editor: Halle Institute for Economic Research (IWH) - Member of the Leibniz Association
dc.typeBook
dspace.entity.typeMonograph
local.accessrights.itemAnonymous
local.openaccesstrue

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
urn_nbn_de_gbv_3_2-1101902.pdf
Größe:
875.98 KB
Format:
Adobe Portable Document Format
Beschreibung:
Forecast combination and interpretability using random subspace
Herunterladen

Sammlungen