Low-rank Newton-ADI methods for large nonsymmetric algebraic Riccati equations / Peter Benner, Patrick Kürschner, Jens Saak

cbs.date.changed2021-07-27
cbs.date.creation2016-10-21
cbs.picatypeOa
cbs.publication.displayformMagdeburg : Max Planck Institute for Dynamics of Complex Technical Systems, November 20, 2014
dc.contributor.authorBenner, Peter
dc.contributor.authorKürschner, Patrick
dc.contributor.authorSaak, Jens
dc.contributor.otherMax-Planck-Institut für Dynamik Komplexer Technischer Systeme
dc.date.accessioned2025-05-29T00:30:54Z
dc.date.issued2014
dc.description.abstractAbstract: The numerical treatment of large-scale, nonsymmetric algebraic Riccati equations (NAREs) by a low-rank variant of Newton\'s method is considered. We discuss a method to compute approximations to the solution of the NARE in a factorized form of low rank. The occurring large-scale Sylvester equations are dealt with using the factored alternating direction implicit iteration (fADI). Several performance enhancing strategies available for the factored ADI as well as the related Newton-ADI for symmetric algebraic Riccati equations are generalized to this combination. This includes the efficient computation of the norm of the residual matrix, adapted shift parameters strategies for fADI, and an acceleration of the Newton\'s scheme by means of a Galerkin projection. Numerical experiments illustrate the capabilities of the proposed method to solve high-dimensional NAREs.de
dc.format.extent1 Online-Ressource (23 Seiten = 0,41 MB) : Diagramme
dc.genrebook
dc.identifier.ppn870662708
dc.identifier.urihttps://epflicht.bibliothek.uni-halle.de/handle/123456789/3935
dc.identifier.urnurn:nbn:de:gbv:3:2-64622
dc.identifier.vl-id2483252
dc.language.isoeng
dc.publisherMax Planck Institute for Dynamics of Complex Technical Systems
dc.relation.ispartofseriesMax Planck Institute Magdeburg Preprints ; 14-21 ppn:870173030
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc510
dc.titleLow-rank Newton-ADI methods for large nonsymmetric algebraic Riccati equations / Peter Benner, Patrick Kürschner, Jens Saak
dc.typeBook
dspace.entity.typeMonograph
local.accessrights.itemAnonymous
local.openaccesstrue

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
urn_nbn_de_gbv_3_2-64622.pdf
Größe:
423.74 KB
Format:
Adobe Portable Document Format
Beschreibung:
Low-rank Newton-ADI methods for large nonsymmetric algebraic Riccati equations
Herunterladen

Sammlungen